《資料1》 数学の基礎概念 (論理と集合)

1 論理

1.1 命題論理

正しいか正しくないか (真か偽か) が判断できる (はずの) 文や式を**命題**という. 真の命題は T (true), 偽の命題は F (false) という「値」をとると考え, これをその命題の**真理値**という. 命題 p の否定を $\neg p$ と表す. 命題 p,q に対して, 「p または q」という命題を $p \lor q$ で表し, 「p かつ q」という命題を $p \land q$ で表す. また, 「p ならば q」という命題を $(\neg p) \lor q$ により定め, これを $p \to q$ で表す. さらに, $(p \to q) \land (q \to p)$ を $p \leftrightarrow q$ で表す. すなわち, これらの**命題結合記号** \neg , \lor , \land , \to , \leftrightarrow は, 次の**真理表**により定義される.

p	$\neg p$
Т	F
F	Т

p	q	$p \lor q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$
Т	Т	Т	Т	Т	Т
T	F	T	F	F	F
F	T	T	F	Т	F
F	F	F	F	Т	Т

p,q の真偽 (真理値) が一致することを $p \equiv q$ で表すと、任意の命題 p,q,r に対して次が成り立つ.

①
$$\neg(\neg p) \equiv p$$
 (二重否定の原則)

②
$$p \lor \neg p \equiv \mathsf{T}, \ p \land \neg p \equiv \mathsf{F}$$
 (二律排反の原則)

③
$$p \lor q \equiv q \lor p$$
, $p \land q = q \land p$ (交換法則)

④
$$p \lor (q \lor r) \equiv (p \lor q) \lor r, \ p \land (q \land r) \equiv (p \land q) \land r$$
 (結合法則)

⑤
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r), \ p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$
 (分配法則)

⑥
$$\neg (p \lor q) \equiv \neg p \land \neg q, \ \neg (p \land q) \equiv \neg p \lor \neg q$$
 (De Morgan の法則)

⑦
$$p \to q \equiv \neg q \to \neg p$$
 (対偶の法則)

⑧
$$((p \to q) \land (q \to r)) \to (p \to r) \equiv \mathsf{T}$$
 (三段論法)

1.2 述語論理

x が (ある定まった集合を動く) 変数で, x の値を指定するごとに P(x) が命題になるとき, P(x) は**命題** 関数 (または**述語**) という.このとき,「すべての x に対し P(x) が真である」という命題 (全称命題) を $\forall x P(x)$ と表し,「P(x) が真であるような x が存在する」という命題 (存在命題) を $\exists x P(x)$ と表す.任意 の命題関数 P(x), Q(x) あるいは P(x,y) に対して次が成立する.

①
$$\forall x (\forall y P(x, y)) = \forall y (\forall x P(x, y)), \exists x (\exists y P(x, y)) = \exists x (\exists y P(x, y))$$

上述の命題結合記号と、**全称記号** ∀, **存在記号** ∃ をあわせて, **論理記号**と呼ぶ.

数学の命題 (定理) は $\forall x (P(x) \Rightarrow Q(x))$ (が真である) の形で述べられることが多い. P(x) = F なる x に対しては $P(x) \Rightarrow Q(x)$ は常に真であるから、上の命題は $\{x \mid P(x)\} \subset \{x \mid Q(x)\}$ ($\{x \mid P(x)\}\}$ は P(x) が真である x 全体の集合を表す)と同じことである. (このとき、Q(x) は P(x) の必要条件、P(x) は Q(x) の十分条件であるという。) 証明法としては次の 3 通り (互いに同値であることを確かめよ) が用いられる.

• 直接法:
$$\forall x (P(x) \Rightarrow Q(x)) \longleftrightarrow \{x \mid P(x)\} \subset \{x \mid Q(x)\}$$

• 対偶法:
$$\forall x ((\neg Q(x)) \Rightarrow (\neg P(x))) \longleftrightarrow \{x \mid \neg Q(x)\} \subset \{x \mid \neg P(x)\}$$

• 背理法:
$$\neg(\exists x (P(x) \land (\neg Q(x)))$$
 \longleftrightarrow $\{x \mid P(x)\} \cap \{x \mid \neg Q(x)\} = \emptyset$

2 集合と写像

2.1 集合

原理的に特定できる「物の集まり」を**集合**という. x が集合 X の 1 つの「個体」であるとき, x は X の元 (または**要素**) であるといい, $x \in X$ と表す. またその否定を $x \notin X$ と表す.

 x,y,z,\ldots からなる集合を $\{x,y,z,\ldots\}$ と表す (集合の**外延的定義**). また性質 P(x) をもつ (P(x) が真となる) $x\in X$ 全体からなる集合を $\{x\in X\mid P(x)\}$ (または $\{x\in X:P(x)\}$) と表す (集合の**内包的定義**). 但し、同じものを複数含む場合は、例えば $\{0,0\}=\{0\}$ 、 $\{(-1)^n\mid n\in \mathbb{Z}\}=\{-1,1\}$ というように解釈する.

集合 X,Y に対し、 $\forall x (x \in X \Rightarrow x \in Y)$ が成り立つとき、X は Y の部分集合であるといい、 $X \subset Y$ (または $X \subseteq Y$) と表す。特に、X = Y とは $(X \subset Y) \land (Y \subset X)$ であることをいう。また、 $(X \subset Y) \land (X \neq Y)$ であるとき、X は Y の真部分集合であるといい, $X \subsetneq Y$ (または $X \subsetneq Y$) と表す。

集合 X の部分集合 A, B, C を考えるとき,

- $A^{c} := \{a \in X \mid a \notin A\}$ を $(X \ c \ s \ t \ b)$ $A \ o$ 補集合という.
- $A \cup B := \{a \mid (a \in A) \lor (a \in B)\}$ を $A \in B$ の合併集合または和集合という.
- $A \cap B := \{a \mid (a \in A) \land (a \in B)\}$ を $A \in B$ の共通部分または積集合という.
- $A \setminus B := A \cap B^{c}$ (= A B) を A から B を引いた**差集合**または A に対する B の**補集合**という.

このとき, $A = \{a \in X \mid a \in A\}$ とみて, 1.1 の ③-⑥ を適用すれば次を得る (①, ②は何を意味するか?):

- ③ $'A \cup B = B \cup A, A \cap B = B \cap A$ (交換法則)
- ④' $A \cup (B \cup C) = (A \cup B) \cup C, \ A \cap (B \cap C) = (A \cap B) \cap C$ (結合法則)
- ⑤' $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (分配法則)
- ⑥ $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C), A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$ (De Morgan の法則)

集合 X の部分集合の全体からなる集合を X の**ベキ集合**と呼び, 2^X (または $\mathcal{P}(X)$) で表す. **空集合** \varnothing および X 自身は 2^X の元である. # によって集合の元の個数を表せば, # (2^X) = $2^{\#X}$ が成り立つ.

2 つの集合 X,Y に対して, $x \in X$ と $y \in Y$ を組にした (x,y) の形のもの全体によって構成される集合を X と Y の**直積集合**といって, $X \times Y$ で表す: $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$.

2.2 写像

2 つの集合 X,Y に対し, X の各元に Y の元を一つずつ対応させる規則 $X \ni x \mapsto y := f(x) \in Y$ が定まっているとき, この規則 f を X から Y への写像または関数といい $(Y = \mathbb{R}, \mathbb{C})$ の場合には関数と呼ぶことが多い), $f: X \to Y$ と表す. このとき, X を写像 f の定義域または始集合, Y を f の余域または終集合という. また, $\Gamma_f := \{(x,f(x)) \mid x \in X\} \subset X \times Y$ を f のグラフという.

各 $x \in X$ に対して, $f(x) \in Y$ を x の (f による) **像**という. 同様に, 各 $A \subset X$ に対して, $f(A) := \{f(x) \mid x \in A\} \subset Y$ を A の**像**という. 特に f(X) を f の**値域**という (余域 Y を値域と呼ぶ流儀もある). また各 $B \subset Y$ に対して, $f^{-1}(B) := \{x \mid f(x) \in B\}$ を B の (f による) **逆像**という. (このようにして $f: X \to Y$ は自然に $f: 2^X \to 2^Y$ および $f^{-1}: 2^Y \to 2^X$ を導く.) このとき, $A, A_1, A_2 \subset X$ および $B, B_1, B_2 \subset Y$ に対して次の関係式が成り立つ.

- $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2), \ B_1 \subset B_2 \Rightarrow f^{-1}(B_1) \subset f^{-1}(B_2)$
- $f(A_1 \cup A_2) = f(A_1) \cup f(A_2), \ f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
- $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2), \ f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
- $f(A_1 \setminus A_2) \supset f(A_1) \setminus f(A_2), \ f^{-1}(B_1 \setminus B_2) = f^{-1}(B_1) \setminus f^{-1}(B_2)$
- $f^{-1}(f(A)) \supset A$, $f(f^{-1}(B)) = B \cap f(X) \supset B$

写像 $f: X \to Y$ に対して、f(X) = Y であるとき、f は Y の上への写像、または f は X から Y への全射という。また、 $\forall x_1 \forall x_2 \left(f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \right)$ が成り立つとき、f は 1 対 1 写像、または f は X から Y への単射という。f が全射かつ単射のとき、全単射であるという。特に X = Y のとき、 $X \ni x \mapsto x \in X$ で定まる全単射を X の恒等写像といい、 id_X または I_X などと表す。f が全射ならば $f(f^{-1}(B)) = B$ が成り立ち、f が単射ならば $f^{-1}(f(A)) = A$ が成り立つ。

 $f: X \to Y$ が全単射のとき、各 $y \in Y = f(X)$ に対して f(x) = y を満たす $x \in X$ が唯一つ定まり、 $y \mapsto x$ により Y から X への一つの写像が得られる.これを f の**逆写像**と呼び、 f^{-1} で表す.このとき $f^{-1}(\{y\}) = \{f^{-1}(y)\}\ (y \in Y)$ が成り立つ.(ちなみに $f(\{x\}) = \{f(x)\}\ (x \in X)$ はいつも成り立つ.)

写像 $f: X \to Y$ および $g: Y_0 \to Z$ は $f(X) \subset Y_0$ のとき**合成可能**という.このとき $X \ni x \mapsto h(x) := g(f(x)) \in Z$ によって定まる写像 $h: X \to Z$ を f と g の**合成写像**といい, $h = g \circ f$ と表す.特に, $f: X \to Y$ が全単射なら,f の逆写像 $f^{-1}: Y \to X$ が存在し, $f^{-1} \circ f = \mathrm{id}_X$, $f \circ f^{-1} = \mathrm{id}_Y$ が成り立つ.写像 $f: X \to Y$ に対して,終集合 Y を $Y_1 := f(X) \subset Y$ で置き換え $f: X \to Y_1$ と見なせば全射となる.一方, $f: X \to Y$ を $X_1 \subset X$ の元についてだけ考えれば, $X_1 \ni x \mapsto f(x) \in Y$ により X_1 から Y への写像が得られる.これを f の X_1 上への制限といい, $f|_{X_1}$ で表す.

③ ε-δ**論法**(参考)

講義では触れないかもしれないが、よく知られた議論の方法であるので紹介する. 論理記号が効果的に使われていることにも注目せよ.

3.1 数列の極限

数列 $\{a_n\}$ が $\alpha \in \mathbb{R}$ に**収束する** $(\lim_{n \to \infty} a_n = \alpha$ と表す) とは,

$$\forall \varepsilon > 0 \ \Big(\exists n_1 \in \mathbb{N} \ \Big(\forall n \in \mathbb{N} \ \big(n \geqslant n_1 \Rightarrow |a_n - \alpha| < \varepsilon \big) \Big) \Big). \tag{1}$$

が成り立つことであると定義される(講義では上極限、下極限を用いて定義した)。この条件はしばしば

$$\forall \varepsilon > 0 \ \exists n_1 \in \mathbb{N} \ \forall n \in \mathbb{N} \ (n \ge n_1 \Rightarrow |a_n - \alpha| < \varepsilon),$$
 あるいは、 $\forall \varepsilon > 0 \ \exists n_1 \in \mathbb{N} \ \forall n \in \mathbb{N} : n \ge n_1 \Rightarrow |a_n - \alpha| < \varepsilon$

などと略記される. (1) を直訳すれば

任意の $\varepsilon > 0$ に対して、適当な $n_1 \in \mathbb{N}$ が存在し、任意の $n \in \mathbb{N}$ に対して $n \ge n_1 \Rightarrow |a_n - \alpha| < \varepsilon$ という命題が成立する

と述べられる. もう少しわかりやすい言葉に翻訳すれば

どんなに小さい正数 ε を取っても、(ε に応じて) 番号 n_1 を十分大きく選ぶことにより、 n_1 以上の番号 n ではいつでも $|a_n-\alpha|<\varepsilon$ が成り立つようにできる.

数列 $\{a_n\}$ が $+\infty$ **に発散する** $(\lim_{n\to\infty}a_n=+\infty$ と表す) とは、

$$\forall L > 0 \,\exists n_1 \in \mathbb{N} \,\forall n \in \mathbb{N} \, (n \geqslant n_1 \Rightarrow a_n > L)$$

が成り立つことであると定義される (+∞ は ∞ と略記される). この条件を意訳すれば

どんなに大きい正数 L を取っても、(L に応じて) 番号 n_1 を十分大きく選ぶことにより、 n_1 以上の番号 n ではいつでも $a_n > L$ が成り立つようにできる.

数列 $\{a_n\}$ が $-\infty$ に発散することも同様にして定義される.

数列 $\{a_n\}$ が**発散する**とは、どんな実数にも収束しないこと、すなわち

$$\forall \alpha \in \mathbb{R} \left(\neg \left(\forall \varepsilon > 0 \,\exists n_1 \in \mathbb{N} \,\forall n \in \mathbb{N} \,\left(n \geqslant n_1 \Rightarrow |a_n - \alpha| < \varepsilon \right) \right) \right)$$

ということである. これを、 1 で述べた事実を用いて書き換えてみよう. まず、 ⑨より

$$\forall \alpha \in \mathbb{R} \ \exists \varepsilon > 0 \ \forall n_1 \in \mathbb{N} \ \exists n \in \mathbb{N} \ \left(\neg (n \geqslant n_1 \Rightarrow |a_n - \alpha| < \varepsilon) \right)$$

と変形できる. $\neg (n \ge n_1 \Rightarrow |a_n - \alpha| < \varepsilon)$ の部分には \Rightarrow の定義と①, ⑥を用いて, 最終的に

$$\forall \alpha \in \mathbb{R} \ \exists \varepsilon > 0 \ \forall n_1 \in \mathbb{N} \ \exists n \in \mathbb{N} \ \left((n \geqslant n_1) \land (|a_n - \alpha| \geqslant \varepsilon) \right)$$

と書き換えられる. すなわち,

どんな $\alpha \in \mathbb{R}$ を与えても、 $(\alpha$ に応じて)正数 ε を十分小さく選べば、いくら大きい番号 n_1 を取っても $n \geqslant n_1$ であって $|a_n - \alpha| \geqslant \varepsilon$ を満たすような番号 n が存在してしまうという状況が、数列 $\{a_n\}$ が発散するということである.

3.2 関数の極限

区間 I 上で定義された関数 f(x) について考える. $a \in \overline{I}$ (すなわち a は I の内点または端点) および $\ell \in \mathbb{R}$ に対して, $x \to a$ のとき f(x) が ℓ に**収束する** ($\lim_{x \to a} f(x) = \ell$ と表す) とは,

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in I \setminus \{a\} \, \left(|x - a| < \delta \Rightarrow |f(x) - \ell| < \varepsilon \right) \tag{2}$$

すなわち,

どんなに小さい正数 ε を取っても (ε に応じて) 正数 δ を十分小さく選ぶことにより, $x \in I \setminus \{a\}$ が $|x-a| < \delta$ である限りは $|f(x)-\ell| < \varepsilon$ を満たすようにできる

ということである. ここで, $\lim_{x\to a} f(x) = \ell$ と次の条件とが同値になることを見よう:

$$\forall \{a_n\} \subset I \setminus \{a\} \left(\lim_{n \to \infty} a_n = a \implies \lim_{n \to \infty} f(a_n) = \ell \right)$$
 (3)

(ここで $\{a_n\}\subset I\setminus\{a\}$ とは、数列 $\{a_n\}$ をこの数列の作る集合と同一視して、 $\{a_n\mid n\in\mathbb{N}\}\subset I\setminus\{a\}$ を満たすことを表す。) まず (2)⇒(3) を示す。数列 $\{a_n\}\subset I\setminus\{a\}$ が a に収束するとき、(2) の $\delta>0$ に対して

$$\exists n_1 \in \mathbb{N} \ \forall n \in \mathbb{N} \ (n \geqslant n_1 \implies |a_n - a| < \delta)$$

であるから、(2) より $|f(a_n)-\ell|<\varepsilon$ となって、 $\lim_{n\to\infty}f(a_n)=\ell$ であることがわかる。次に $(3)\Rightarrow(2)$ を対偶によって示す。(2) を否定すれば、(3) を可様の議論により

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in I \setminus \{a\} \ \big((|x - a| < \delta) \land (|f(x) - \ell| \geqslant \varepsilon) \big).$$

各 $\delta = n^{-1}$ に対して存在する $x \in I \setminus \{a\}$ を a_n とすれば、

$$\exists \varepsilon > 0 \ \forall n \in \mathbb{N} \ \exists a_n \in I \setminus \{a\} \ \left((|a_n - a| < n^{-1}) \land (|f(a_n) - \ell| \geqslant \varepsilon) \right).$$

ここで選ばれた $\{a_n\}$ は, $\{a_n\} \subset I \setminus \{a\}$ を満たし a に収束するが, どんな番号 n に対しても $|f(a_n) - \ell| \ge \varepsilon$ であるから, $f(a_n)$ は ℓ には収束し得ない. すなわち (3) が否定される.

f(x) が $a \in I$ で**連続**であるとは,

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in I \, \left(|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon \right) \tag{4}$$

が成り立つことと定義される. これを @ 関数の極限, ⑥ 数列の極限 を用いれば、それぞれ

(a)
$$\lim_{x \to a} f(x) = f(a)$$
, (b) $\forall \{a_n\} \subset I \left(\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} f(a_n) = f(a) \right)$

と言い表される. ((4) において、 $\forall x \in I \setminus \{a\}$ でなく $\forall x \in I$ となっているのは、後続の不等式 $|f(x) - f(a)| < \varepsilon$ が x = a のときには自明 (= 明らかに正しい) となるからである.)